669 research outputs found

    Continental flood basalts do not drive later Phanerozoic extinctions

    Get PDF

    Intra- and interspecific variability in offspring size in nautilids

    Get PDF

    Geographic and temporal morphological stasis in the latest Cretaceous ammonoid Discoscaphites iris from the U.S. Gulf and Atlantic Coastal Plains

    Get PDF
    We examine temporal and spatial variation in morphology of the ammonoid cephalopod Discoscaphites iris using a large dataset from multiple localities in the Late Cretaceous (Maastrichtian) of the United States Gulf and Atlantic Coastal Plains, spanning a distance of 2000 km along the paleoshoreline. Our results suggest that the fossil record of D. iris is consistent with no within species net accumulation of phyletic evolutionary change across morphological traits or the lifetime of this species. Correlations between some traits and paleoenvironmental conditions as well as changes in the coefficient of variation may support limited population-scale ecophenotypic plasticity, however where stratigraphic data are available, no directional changes in morphology occur prior to the Cretaceous/Paleogene (K/Pg) boundary. This is consistent with models of 'dynamic' evolutionary stasis. Combined with knowledge of life history traits and paleoecology of scaphitid ammonoids, specifically a short planktonic phase after hatching followed by transition to a nektobenthic adult stage, these data suggest that scaphitids had significant potential for rapid morphological change in conjunction with limited dispersal capacity. It is therefore likely that evolutionary mode in the Scaphitidae (and potentially across the broader ammonoid clade) follows a model of cladogenesis wherein a dynamic morphological stasis is periodically interrupted by more substantial evolutionary change at speciation events. Finally, the lack of temporal changes in our data suggest that global environmental changes (such as those possibly related to the emplacement of the Deccan Traps Large Igneous Province) had a limited effect on the morphology of North American ammonoid faunas during the latest Cretaceous prior to the K/Pg mass extinction event.Missing morphometric values are highlighted with NA in the dataset.Funding provided by: National Science FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/100000001Award Number: 1924807Funding provided by: American Museum of Natural History and Richard Gilder Graduate School*Crossref Funder Registry ID: Award Number:We assembled a large morphometric dataset consisting of 328 individual fossil specimens of the scaphitid ammonoid cephalopod Discoscaphites iris collected from nine localities in Texas, Missouri, Mississippi, and New Jersey, representing a ~2000 km transect from SW to NE and encompassing the full geographic range of this species. Morphometric parameters were measured on well-preserved adult specimens of two dimorphs (Macroconchs - presumably the female, and microconch, presumably the male). We took up to seven morphometric measurements, and calculated ratios that captured the size, shape, and degree of compression of each of these ammonoid shells from each different locality. We evaluated the coefficient of variation (the standard deviation divided by the mean) for size and shape ratios as well as compression ratios at each locality. We used non-parametric statistical tests [Mann-Whitney U] to evaluate the significance of changes in mean morphological trait values between localities. To correct for multiple comparisons we applied a Bonferroni correction and also controlled for the false discovery rate. We also explored relationships between morphological traits and several environmental variables using linear modelling. All analyses were conducted in the R programming environment

    Nature and timing of biotic recovery in Antarctic benthic marine ecosystems following the Cretaceous-Paleogene mass extinction

    Get PDF
    Taxonomic and ecological recovery from the Cretaceous–Palaeogene (K–Pg) mass extinction 66 million years ago shaped the composition and structure of modern ecosystems. The timing and nature of recovery has been linked to many factors including palaeolatitude, geographical range, the ecology of survivors, incumbency and palaeoenvironmental setting. Using a temporally constrained fossil dataset from one of the most expanded K–Pg successions in the world, integrated with palaeoenvironmental information, we provide the most detailed examination of the patterns and timing of recovery from the K–Pg mass extinction event in the high southern latitudes of Antarctica. The timing of biotic recovery was influenced by global stabilization of the wider Earth system following severe environmental perturbations, apparently regardless of latitude or local environment. Extinction intensity and ecological change were decoupled, with community scale ecological change less distinct compared to other locations, even if the taxonomic severity of the extinction was the same as at lower latitudes. This is consistent with a degree of geographical heterogeneity in the recovery from the K–Pg mass extinction. Recovery in Antarctica was influenced by local factors (such as water depth changes, local volcanism, and possibly incumbency and pre‐adaptation to seasonality of the local benthic molluscan population), and also showed global signals, for example the radiation of the Neogastropoda within the first million years of the Danian, and a shift in dominance between bivalves and gastropods

    The provenance of Borneo's enigmatic alluvial diamonds:A case study from Cempaka, SE Kalimantan

    Get PDF
    Gem-quality diamonds have been found in several alluvial deposits across central and southern Borneo. Borneo has been a known source of diamonds for centuries, but the location of their primary igneous source remains enigmatic. Many geological models have been proposed to explain their distribution, including: the diamonds were derived from a local diatreme; they were brought to the surface through ophiolite obduction or exhumation of UHP metamorphic rocks; they were transported long distances southward via major Asian river systems; or, they were transported from the Australian continent before Borneo was rifted from its northwestern margin in the Late Jurassic. To assess these models, we conducted a study of the provenance of heavy minerals from Kalimantan's Cempaka alluvial diamond deposit. This involved collecting U–Pb isotopic data, fission track and trace element geochemistry of zircon as well as major element geochemical data of spinels and morphological descriptions of zircon and diamond. The results indicate that the Cempaka diamonds were likely derived from at least two sources, one which was relatively local and/or involved little reworking, and the other more distal which records several periods of reworking. The distal diamond source is interpreted to be diamond-bearing pipes that intruded the basement of a block that: (1) rifted from northwest Australia (East Java or SW Borneo) and the diamonds were recycled into its sedimentary cover, or: (2) were emplaced elsewhere (e.g. NW Australia) and transported to a block (e.g. East Java or SW Borneo). Both of these scenarios require the diamonds to be transported with the block when it rifted from NW Australia in the Late Jurassic. The local source could be diamondiferous diatremes associated with eroded Miocene high-K alkaline intrusions north of the Barito Basin, which would indicate that the lithosphere beneath SW Borneo is thick (~ 150 km or greater). The ‘local’ diamonds could also be associated with ophiolitic rocks that are exposed in the nearby Meratus Mountains

    Nanostructural Diversity of Synapses in the Mammalian Spinal Cord

    Get PDF
    This work for funded by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/M021793/1), RS MacDonald Charitable Trust, Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), the Engineering and Physical Sciences Research Council (EPSRC; EP/P030017/1), Welcome Trust (202932/Z/16/Z), European Research Council (ERC; 695568) and the Simons Initiative for the Developing Brain.Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form “tripartite synapses”, can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the ‘rules’ governing synaptic nanostructural organisation.Publisher PDFPeer reviewe

    Macrofossil evidence for a rapid and severe Cretaceous–Paleogene mass extinction in Antarctica

    Get PDF
    Debate continues about the nature of the Cretaceous–Paleogene (K–Pg) mass extinction event. An abrupt crisis triggered by a bolide impact contrasts with ideas of a more gradual extinction involving flood volcanism or climatic changes. Evidence from high latitudes has also been used to suggest that the severity of the extinction decreased from low latitudes towards the poles. Here we present a record of the K–Pg extinction based on extensive assemblages of marine macrofossils (primarily new data from benthic molluscs) from a highly expanded Cretaceous–Paleogene succession: the López de Bertodano Formation of Seymour Island, Antarctica. We show that the extinction was rapid and severe in Antarctica, with no significant biotic decline during the latest Cretaceous, contrary to previous studies. These data are consistent with a catastrophic driver for the extinction, such as bolide impact, rather than a significant contribution from Deccan Traps volcanism during the late Maastrichtian

    Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact

    Get PDF
    J.W.B.R. was supported by ERC Starting Grant 805246 OldCO2NewArchives.Mass extinction at the Cretaceous–Paleogene (K-Pg) boundary coincides with the Chicxulub bolide impact and also falls within the broader time frame of Deccan trap emplacement. Critically, though, empirical evidence as to how either of these factors could have driven observed extinction patterns and carbon cycle perturbations is still lacking. Here, using boron isotopes in foraminifera, we document a geologically rapid surface-ocean pH drop following the Chicxulub impact, supporting impact-induced ocean acidification as a mechanism for ecological collapse in the marine realm. Subsequently, surface water pH rebounded sharply with the extinction of marine calcifiers and the associated imbalance in the global carbon cycle. Our reconstructed water-column pH gradients, combined with Earth system modeling, indicate that a partial ∌50% reduction in global marine primary productivity is sufficient to explain observed marine carbon isotope patterns at the K-Pg, due to the underlying action of the solubility pump. While primary productivity recovered within a few tens of thousands of years, inefficiency in carbon export to the deep sea lasted much longer. This phased recovery scenario reconciles competing hypotheses previously put forward to explain the K-Pg carbon isotope records, and explains both spatially variable patterns of change in marine productivity across the event and a lack of extinction at the deep sea floor. In sum, we provide insights into the drivers of the last mass extinction, the recovery of marine carbon cycling in a postextinction world, and the way in which marine life imprints its isotopic signal onto the geological record.Publisher PDFPeer reviewe
    • 

    corecore